Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38541729

RESUMEN

The aim of this study was to investigate the effects of dietary l-glutamine (Gln) supplementation on the morphology and function of the intestine and the growth of muscle in piglets. In this study, sixteen 21-day-old piglets were randomly divided into two groups: the Control group (fed a basal diet) and the Gln group (fed a basal diet supplemented with 0.81% Gln). Blood, gut, and muscle samples were collected from all piglets on Day 20 of the trial. Compared with the Control group, the supplementation of Gln increased (p < 0.05) the villus height, villus width, villus surface area, and villus height/crypt depth ratio of the small intestine. Furthermore, the supplementation of Gln increased (p < 0.05) total protein, total protein/DNA, and RNA/DNA in both the jejunum and ileum. It also increased (p < 0.05) the concentrations of carnosine and citrulline in the jejunal mucosa, as well as citrulline and cysteine concentrations in the ileum. Conversely, Gln supplementation decreased (p < 0.05) Gln concentrations in both the jejunum and ileum, along with ß-aminoisobutyric acid and 1-Methylhistidine concentrations, specifically in the ileum. Subsequent research revealed that Gln supplementation increased (p < 0.05) the mRNA levels for glutathione-S-transferase omega 2 and interferon-ß in the duodenum. In addition, Gln supplementation led to an increase (p < 0.05) in the number of Lactobacillus genus in the colon, but a decrease (p < 0.05) in the level of HSP70 in the jejunum and the activity of diamine oxidase in plasma. Also, Gln supplementation reduced (p < 0.05) the mRNA levels of glutathione-S-transferase omega 2 and interferon stimulated genes, such as MX1, OAS1, IFIT1, IFIT2, IFIT3, and IFIT5 in both the jejunum and ileum, and the numbers of Clostridium coccoides, Enterococcus genus, and Enterobacterium family in the colon. Moreover, Gln supplementation enhanced (p < 0.05) the concentrations of total protein, RNA/DNA, and total protein/DNA ratio in the longissimus dorsi muscle, the concentrations of citrulline, ornithine, arginine, and hydroxyproline, and the mRNA level of peptide transporter 1, while reducing the contents of hydrogen peroxide and malondialdehyde and the mRNA level of glutathione-S-transferase omega 2 in the longissimus dorsi muscle. In conclusion, dietary Gln supplementation can improve the intestinal function of piglets and promote the growth of the longissimus dorsi muscle.

2.
Animals (Basel) ; 14(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540053

RESUMEN

The purpose of this study was to determine the efficacy of tannic acid on the antioxidative function, immunity, and intestinal barrier of broilers co-infected with coccidia and Clostridium perfringens (CCP). A total of 294 1-day-old arbor acres(AA) broilers were divided into three groups: control group (CON), CCP co-infected group (CCP), and 1000 mg/kg TA + CCP co-infected group (CTA). This trial lasted for 28 days. The results showed that the CCP group decreased the activity of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), catalase (CAT), and total antioxidant capacity (T-AOC) levels and increased the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the jejunum (p < 0.05). The mRNA levels of GSH-Px3 and CAT in the liver and jejunum, and the mRNA levels of GSH-Px3, SOD, HO-1, and NAD(P)H quinone oxidoreductase I (NQO1) in the liver were down-regulated by CCP challenge (p < 0.05). In addition, the Keap1 and Nrf2 mRNA levels in the liver and jejunum, jejunal glutathione S-transferase (GST), and heme-oxygenase-1 (HO-1) were upregulated in the CCP group compared with CON (p < 0.05). The mRNA levels of interleukin 8 (IL-8), IL-1ß, inducible nitric oxide synthase (iNOS), and interferon γ (IFN-γ) in the jejunum were elevated, and jejunal mRNA levels of IL-10, zonula occludens protein1 (ZO-1), claudin-1, claudin-2, and occludin were decreased in the CCP treatment (p < 0.05). Dietary supplementation with 1000 mg/kg TA increased the activity of GSH-Px, T-SOD, CAT, and T-AOC and decreased the contents of H2O2 and MDA in the jejunum (p < 0.05). Compared with the CCP group, TA decreased the mRNA level of Keap1 and Nrf2 in the liver and jejunum, increased the GSH-Px3, SOD, and CAT mRNA in the liver, and alleviated the rise of IL-8, IL-1ß, iNOS, and IFN-γ and decrease in IL-10, occludin gene expression in the jejunum (p < 0.05). In conclusion, the addition of 1000 mg/kg TA to the diet improved the jejunal barrier, mitigated the jejunal inflammation, and increased the antioxidant capacity of the liver and jejunum through the activation of the transcription factor Nrf2 downstream of the Nrf2-Keap1 pathway in broilers with NE condition.

3.
J Sci Food Agric ; 104(4): 2015-2022, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37919879

RESUMEN

BACKGROUND: This study aimed to determine the effects of a mixture of glycerol monolaurate and cinnamaldehyde (GCM) supplementation on the laying performance, egg quality, antioxidant capacity, and serum parameters of laying hens. A total of 1120 14-week-old Jingfen-1 strain laying hens with similar performance were randomly allocated to four dietary treatments: control, and GCM groups supplemented with 250, 500, or 1000 mg kg-1 for 12 weeks. RESULTS: Compared with the control group, GCM-supplemented groups significantly reduced (P < 0.05) the rate of unqualified eggs of laying hens aged 17-24 weeks. Supplementation of GCM significantly increased (P < 0.05) yolk color and serum glutathione peroxidase (GSH-Px) activity but decreased (P < 0.05) the hydrogen peroxide (H2 O2 ) content in the serum of laying hens at the age of 20 weeks. Furthermore, groups supplemented with GCM showed a significant increase (P < 0.05) in Haugh unit, yolk color, activities of total superoxide dismutase and GSH-Px, and the glucose content in serum, and a decrease (P < 0.05) in the content of urea nitrogen and H2 O2 and malondialdehyde in serum of laying hens at the age of 24 weeks. 500 mg kg-1 GCM supplementation significantly increased (P < 0.05) the number of large white follicles and 1000 mg kg-1 GCM supplementation decreased the number of large yellow follicles in 28-week-old laying hens. CONCLUSION: These results indicated that GCM supplementation has positive effects on reducing egg loss and improving egg quality in the early laying period of laying hens. © 2023 Society of Chemical Industry.


Asunto(s)
Acroleína , Antioxidantes , Pollos , Lauratos , Monoglicéridos , Animales , Femenino , Acroleína/análogos & derivados , Alimentación Animal/análisis , Dieta , Suplementos Dietéticos
4.
Animals (Basel) ; 13(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136901

RESUMEN

This study was conducted to investigate effects of dietary Limosilactobacillus fermentum and Lacticaseibacillus paracasei supplementation on the intestinal stem cell proliferation, immunity, and ileal microbiota of broiler chickens challenged by coccidia and Clostridium perfringens. A total of 336 one-day-old Ross 308 chickens were randomly assigned into four groups. Chickens in the control (CTR) group were fed basal diet, and chickens in the three challenged groups were fed basal diets supplemented with nothing (CCP group), 1.0 × 109 CFU/kg L. fermentum (LF_CCP group), and 1.0 × 109 CFU/kg L. paracasei (LP_CCP group), respectively. All challenged birds were infected with coccildia on day 9 and Clostridium perfringens during days 13-18. The serum and intestinal samples were collected on days 13 and 19. The results showed that L. fermentum significantly increased jejunal gene expression of cdxB (one of the intestinal stem cell marker genes) on day 13. Additionally, L. fermentum significantly up-regulated mRNA levels of JAK3 and TYK2 and tended to increase STAT6 mRNA expression in jejunum on day 19. In the cecal tonsil, both L. fermentum and L. paracasei decreased mRNA expression of JAK2 on day 13, and L. fermentum down-regulated JAK1-2, STAT1, and STAT5-6 gene expressions on day 19. Ileal microbiological analysis showed that coccidial infection increased the Escherichia-Shigella, Lactobacillus, and Romboutsia abundance and decreased Candidatus_Arthromitus richness on day 13, which were reversed by Lactobacillus intervention. Moreover, Lactobacilli increased ileal Lactobacillus richness on day 19. In conclusion, Lactobacilli alleviated the impairment of intestinal stem cell proliferation and immunity in coccidia- and C. perfringens-challenged birds via modulating JAK/STAT signaling and reshaping intestinal microflora.

5.
Life (Basel) ; 13(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37240767

RESUMEN

Necrotic enteritis (NE) is an important enteric inflammatory disease of poultry, and the effects of vitamin A (VitA) on NE birds are largely unknown. The present study was conducted to investigate the effects of VitA on the immune responses and VitA metabolism of NE broilers as well as the underlying mechanisms. Using a 2 × 2 factorial arrangement, 336 1-day-old Ross 308 broiler chicks were randomly assigned to 4 groups with 7 replicates. Broilers in the control (Ctrl) group were fed a basal diet without extra VitA supplementation. Broilers in the VitA group were fed a basal diet supplemented with 12,000 IU/kg of VitA. Birds in NE and VitA + NE groups were fed corresponding diets and, in addition, co-infected with Eimeria spp. and Clostridium perfringens on days 14 to 20. Samples of the blood, jejunum, spleen and liver were obtained on day 28 for analysis, and meanwhile, lesion scores were also recorded. The results showed that NE challenge increased lesion score in the jejunum and decreased serum glucose, total glyceride, calcium, phosphorus and uric acid levels (p < 0.05). VitA supplementation reduced the levels of serum phosphorus, uric acid and alkaline phosphatase in NE-challenged birds and increased serum low-density lipoprotein content and the activity of aspartate aminotransferase and creatine kinase (p < 0.05). Compared with the Ctrl group, the VitA and NE groups had higher mRNA expression of interferon-γ in the jejunum (p < 0.05). NE challenge up-regulated mRNA expression of interleukin (IL)-13, transforming growth factor-ß4, aldehyde dehydrogenase (RALDH)-2 and RALDH-3 in the jejunum, while VitA supplementation increased jejunal IL-13 mRNA expression and hepatic VitA content, but down-regulated splenic IL-13 mRNA expression (p < 0.05). The VitA + NE group had higher serum prostaglandin E2 levels and the Ctrl group had higher splenic RALDH-3 mRNA expression than that of the other three groups (p < 0.05). NE challenge up-regulated jejunal retinoic acid receptor (RAR)-ß and retinoid X receptor (RXR)-α as well as splenic RAR-α and RAR-ß mRNA expression (p < 0.05). VitA supplementation up-regulated jejunal RAR-ß expression but down-regulated mRNA expression of RXR-α, RXR-γ, signal transducers and activators of transcription (STAT) 5 and STAT6 in the spleen (p < 0.05). Moreover, compared with the Ctrl group, the VitA and NE groups had down-regulated mRNA expression of jejunal and splenic Janus kinase (JAK) 1 (p < 0.05). In conclusion, NE challenge induced jejunal injury and expression of Th2 and Treg cell-related cytokines and enhanced RALDH and RAR/RXR mRNA expression, mainly in the jejunum of broilers. VitA supplementation did not alleviate jejunal injury or Th2 cell-related cytokine expression; however, it improved hepatic VitA deposition and inhibited the expression of RALDH-3, RXR and the JAK/STAT signaling pathway in the spleen of broilers. In short, the present study suggested the modulatory effects of vitamin A on the immune responses and vitamin A metabolism in broiler chickens challenged with necrotic enteritis.

6.
Animals (Basel) ; 13(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37106839

RESUMEN

The current study was carried out to examine the effects of pueraria extract (PE) and curcumin (CUR) on growth performance, antioxidant capacity and intestinal integrity in broiler chickens. A complete randomized design with a 2 × 2 factorial arrangement of treatments was employed to assign 200 one-day-old Ross-308 broilers to four groups, each including five replicates of ten birds. Chickens in the control group (CON) were fed the basal diet, while the PE, CUR and PE+CUR groups were supplemented with 200 mg/kg PE or 200 mg/kg CUR or 200 mg/kg PE+ 200 mg/kg CUR. This trial lasted for 28 days. The PE supplementation decreased the average daily gain during the whole period (p < 0.05). The PE+CUR group had a higher feed conversion ratio than that of the PE and CUR groups during days 14-28 and 1-28 (p < 0.05). Dietary CUR supplementation increased duodenal T-SOD activity (p < 0.05). Compared with the CON group, the other three groups increased the duodenal GSH-Px activity, the PE+CUR group reduced the duodenal H2O2 level, and the CUR and PE groups elevated the ileal GSH-Px activity and the ratio of jejunal villus height to crypt depth, respectively (p < 0.05). The addition of PE decreased crypt depth and increased villus area and mucin-2 mRNA level in the jejunum (p < 0.05). Overall, dietary supplementation with PE, CUR, or a combination of these, enhanced the antioxidant status and intestinal integrity of broilers.

7.
Front Vet Sci ; 9: 1037046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337182

RESUMEN

A total of 480 one-day-old AA broiler chicks were randomly allocated to one of four treatments in a 2 × 2 factorial to investigate the effects of tannic acid (TA) on growth performance, relative organ weight, antioxidant capacity, and intestinal health in broilers dietary exposed to aflatoxin B1 (AFB1). Treatments were as follows: (1) CON, control diet; (2) TA, CON + 250 mg/kg TA; (3) AFB1, CON + 500 µg/kg AFB1; and (4) TA+AFB1, CON + 250 mg/kg TA + 500 µg/kg AFB1. There were 10 replicate pens with 12 broilers per replicate. Dietary AFB1 challenge increased the feed conversion ratio during days 1 to 21 (P < 0.05). The TA in the diet did not show significant effects on the growth performance of broilers during the whole experiment period (P > 0.05). The liver and kidney relative weight was increased in the AF challenge groups compared with the CON (P < 0.05). The addition of TA could alleviate the relative weight increase of liver and kidney caused by AFB1 (P < 0.05). Broilers fed the AFB1 diets had lower activity of glutathione peroxidase, catalase, total superoxide dismutase, S-transferase, and total antioxidant capacity in plasma, liver and jejunum, and greater malondialdehyde content (P < 0.05). Dietary supplemented with 250 mg/kg TA increased the activities of antioxidative enzymes, and decreased malondialdehyde content (P < 0.05). In addition, AFB1 significantly reduced the villus height and crypt depth ratio in the ileum on day 42 (P < 0.05). In conclusion, supplementation with 250 mg/kg TA could partially protect the antioxidant capacity and prevent the enlargement of liver in broilers dietary challenged with 500 µg/kg AFB1.

8.
Front Vet Sci ; 9: 1033022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299630

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry all over the world, causing significant profit losses. Tannins and organic zinc have been shown to exert protective effects on the intestinal dysfunction caused by endotoxins. However, there is little information on tannic acid-chelated zinc (TAZ) supplementation in the diet of newborn piglets. This study was conducted to determine the effects of TAZ on the intestinal function of piglets infected with PEDV. Thirty-two 7-day-old piglets were randomly allocated to 1 of 4 treatments in a 2 × 2 factorial design consisting of 2 diets (0 or 50 mg/kg BW TAZ) and challenge (saline or PEDV). On day 9 of the trial, 8 pigs per treatment received either sterile saline or PEDV solution at 106 TCID50 (50% tissue culture infectious dose) per pig. Pigs infected with PEDV had greater diarrhea rate and lower average daily gain (ADG) (P < 0.05). PEDV infection decreased plasma D-xylose concentration, most antioxidative enzyme activities in plasma and intestine, as well as the small intestinal villus height (P < 0.05). Plasma diamine oxidase and blood parameters were also affected by PEDV infection. Dietary supplementation with TAZ could ameliorate the PEDV-induced changes in all measured variables (P < 0.05). Moreover, TAZ decreased the concentration of malondialdehyde in plasma, duodenum, jejunum, and colon (P < 0.05). Collectively, our results indicated that dietary TAZ could alleviate PEDV induced damage on intestinal mucosa and antioxidative capacity, and improve the absorptive function and growth in piglets. Therefore, our novel findings also suggest that TAZ, as a new feed additive for neonatal and weaning piglets, has the potential to be an alternative to ZnO.

9.
Front Vet Sci ; 9: 1025677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590818

RESUMEN

Necrotic enteritis (NE) is a great threat to the intestinal health of broilers, resulting in decreased growth performance and significant economic losses. Lactobacillus fermentum (LF) and Lactobacillus paracasei (LP) exert beneficial effects on intestinal health. The aim of the present study was to investigate the effects of dietary LF and LP on the intestinal health and growth performance of broilers challenged with coccidia and Clostridium perfringens (CCP). The animal trial was carried out using 336 broilers (Ross 308) for 35 days with a completely randomized design. The broilers were divided into 4 groups based on treatment as follows: the control (CTR) group was fed the basal diet and without CCP challenge and the CCP group was fed the basal diet and with CCP challenge. The broilers in the CCP+LF and CCP+LP groups were challenged by CCP, and meanwhile, LF (1 × 109 CFU/g) and LP (1 × 109 CFU/g) were supplemented into the basal diets, respectively. The results showed that the growth performance and the intestinal morphology were negatively affected by the CCP challenge. In addition, the number of coccidia in the intestinal digesta and the relative abundance of Escherichia coli in the cecal digesta were increased. Besides, the mRNA level of IgA in the jejunum was downregulated, and the transcript level of IL-8 was upregulated by the CCP challenge. Dietary LF and LP failed to improve the growth performance of broilers with the CCP challenge. However, they were beneficial for intestinal barrier function. In addition, dietary LF was able to alleviate the downregulation of TGF-ß mRNA level in the spleen with CCP challenge and decreased the lesion scores compared with the CCP group. Furthermore, dietary LP alleviated the upregulation of the IL-8 mRNA level in the jejunum with CCP challenge and reduced the number of coccidia in the ileal digesta. In conclusion, dietary LF and LP failed to mitigate the negative effects of CCP infection on growth performance; however, they were able to improve the intestinal health of broilers challenged with CCP by strengthening the intestinal barrier and alleviating inflammation.

10.
Front Vet Sci ; 8: 680742, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136557

RESUMEN

Preventative effects of Lactobacillus fermentum and Bacillus coagulans against Clostridium perfringens infection in broilers have been well-demonstrated. The present study was conducted to investigate the modulation of these two probiotics on intestinal immunity and microbiota of C. perfringens-challenged birds. The 336 one-day-old broilers were assigned to four groups with six replicates in each group. Birds in the control were unchallenged and fed a basal diet, and birds in the three challenged groups were dietary supplemented with nothing (Cp group), 1 × 109 CFU/kg of L. fermentum (Lf_Cp group), or 1 × 1010 CFU/kg of B. coagulans (Bc_Cp group). Challenge was performed from days 14 to 20, and samples were collected on days 21 and 28. Challenge upregulated interleukin (IL)-1ß and transforming growth factor (TGF)-ß4 mRNA expression in jejunum on day 21, which was downregulated by B. coagulans and L. fermentum, respectively (P < 0.05). Both probiotic groups upregulated jejunal IL-1ß, interferon (IFN)-γ, IL-17, and TGF-ß4 on day 28 as well as IFN-γ on day 21 (P < 0.05). The Bc_Cp group increased CD3+ T cell counts in the jejunal crypt on day 21 (P < 0.05). Challenge decreased the ileal ACE index on day 21 and cecal microbial richness on day 28, which were increased by probiotic treatments, and ileal bacterial richness decreased in the Bc_Cp group on day 28 (P < 0.05). Only ileal microbiota on day 21 was distinctly affected with an R-value at 0.3116 by ANOSIM analysis (P < 0.05). Compared with the control, ileal Firmicutes increased on day 21, and ileal Bacteroidetes and cecal Proteobacteria decreased on day 28 in challenged groups (P < 0.05). Challenge increased Romboutsia spp. in the ileum as well as unclassified f_Lachnospiraceae and Ruminococcus_torques group in the cecum, and decreased Lactobacillus spp. in the ileum on day 21, which were all conversely modulated by L. fermentum (P < 0.05). Challenge increased amino acid metabolism of ileal microbiota and membrane transport of cecal microbiota, and decreased amino acid metabolism of cecal microbiota on day 21, which were conversely regulated by both probiotics (P < 0.05). In conclusion, L. fermentum and B. coagulans attenuated the intestinal inflammation and microbial dysbiosis soon after C. perfringens challenge.

11.
Front Biosci (Landmark Ed) ; 25(7): 1324-1336, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32114435

RESUMEN

Glycerol-lactate esters are energy supplements for exercise, but effects of trilactic glyceride (TLG) on intestinal function and hepatic metabolism are unknown. We found that dietary supplementation with 0.5% TLG to weanling piglets decreased plasma concentrations of low-density lipoprotein and gamma-glutamyl transferase but increased those of D-xylose and high-density lipoprotein. TLG supplementation enhanced mRNA levels for fatty acid synthase (FASN) and SLC27A2 in white adipose tissue; insulin receptor in duodenum; aquaporin-8 in ileum, jejunum and colon; aquaporin-10 in duodenum and ileum; nuclear factor like-2 in jejunum and colon; glutathione S-transferase and phosphoenolpyruvate carboxykinase-1 in intestines; and abundances of claudin-1 and occludin proteins. TLG supplementation decreased mRNA levels for: hepatic hormone-sensitive lipase E, lipoprotein lipase, FASN, insulin-like growth factor-binding protein-3, and SLC27A2; and intestinal lipoprotein lipase, FASN and NADPH oxidase. Furthermore, TLG supplementation enhanced abundances of genus Bifidobacterium, while reducing abundances of family Enterobacteriaceae in ileum, colon and cecum; jejunal caspase-3 protein and diarrhea rate. In conclusion, dietary supplementation with TLG modulated lipid metabolism and alleviated diarrhea by improving intestinal function and regulating intestinal microflora in piglets.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glicéridos/farmacología , Mucosa Intestinal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Glicéridos/administración & dosificación , Glicéridos/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ácido Láctico/química , Metabolismo de los Lípidos/genética , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Porcinos , Destete
12.
Asian-Australas J Anim Sci ; 33(9): 1444-1454, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32054204

RESUMEN

OBJECTIVE: Cold stress induces oxidative damage and impairs energy status of broilers. N-acetylcysteine (NAC) exhibits antioxidant properties and modulates energy metabolism of animals. This study was conducted to investigate the effects of NAC on energy status and antioxidant capacity of heart and liver in the cold-stressed broilers. METHODS: The experiment consisted of 4 treatments in a 2×2 factorial arrangement with two diets (basal diet or plus 0.1% NAC) and two ambient temperatures (thermoneutral [conventional ambient temperature] or cold stress [10°C±1°C during days 15 to 42]). RESULTS: No ascites were seen in cold-stressed broilers. NAC did not attenuate the impaired growth performance of stressed birds. However, NAC decreased plasma asparagine but increased aspartate levels in cold-stressed birds (p<0.05). NAC reduced hepatic adenosine triphosphate (ATP) but elevated adenosine diphosphate contents in unstressed birds (p< 0.05). The hepatic ratio of adenosine monophosphate (AMP) to ATP was increased in birds fed NAC (p<0.05). NAC decreased plasma malondialdehyde (MDA) level and cardiac total superoxide dismutase (T-SOD) activity in unstressed birds, but increased hepatic activities of T-SOD, catalase and glutathione peroxidase in stressed birds (p<0.05). NAC down-regulated hepatic AMP-activated protein kinase but up-regulated cardiac heme-oxigenase mRNA expression in stressed birds, and decreased expression of hepatic peroxisome proliferatoractivated receptor coactivator-1α as well as hypoxia-inducible factor-1α in liver and heart of birds. CONCLUSION: Dietary NAC did not affect energy status but enhanced the hepatic antioxidant capacity by increasing the activities of antioxidant enzymes in cold-stressed broilers.

13.
Animals (Basel) ; 10(2)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019217

RESUMEN

The usage of fermented soybean meal (FSBM) in poultry feed is limited due to the high cost. The present study was conducted to examine the carcass traits and meat quality of broiler chickens that were fed diets with partial replacement of soybean meal (SBM) with FSBM. The 336 one-day-old chicks were assigned to four groups with 0% (control), 2.5%, 5.0%, and 7.5% FSBM addition in corn-SBM-based diets. Compared with the control, 2.5% and 5.0% FSBM decreased leg muscle yield, breast drip loss, and cooking loss (p < 0.05). The 7.5% FSBM increased the ultimate pH of breast and thigh muscles, and all FSBM treatments decreased muscle lightness and breast malondialdehyde content (p < 0.05). The 2.5% FSBM increased breast total superoxide dismutase activity, while 7.5% FSBM reduced breast hydrogen peroxide level (p < 0.05). All FSBM treatments elevated breast contents of bitter and sour tasting amino acids, and 2.5% and 7.5% FSBM increased breast glutamic acid and total free amino acids (p < 0.05). The 5.0% and 7.5% FSBM elevated thigh isoleucine and leucine contents (p < 0.05). In conclusion, FSBM replacing SBM affected meat quality with the decrease of lightness and increase of pH, water-holding capacity, antioxidant properties, and free amino acids.

14.
Int J Mol Sci ; 19(10)2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30360365

RESUMEN

Trihexanoin is a short-chain triglyceride (SCT). Many studies have reported that SCTs play important roles in the maintenance of intestinal epithelial structure and function. The present work was to investigate the effects of trihexanoin on growth performance, carbohydrate and fat metabolism, as well as intestinal morphology and function in weaned piglets. Twenty weaned piglets (21 ± 2 d) were randomly allocated to one of two treatment groups: The control group (basal diet supplemented with 0.5% soya oil); the TH group (basal diet supplemented with 0.5% trihexanoin). Dietary trihexanoin supplementation significantly reduced diarrhea rate; increased the concentrations of LDL, HDL and total protein in plasma; decreased cholesterol concentrations and glutamyl transpeptidase activity in plasma; improved intestinal morphologic structure; altered the mRNA levels and abundances of proteins related to glycogen and fat metabolism, mucosal barrier function, antioxidant capacity and water transport capacity; and altered the community of intestinal microflora. These results indicate that dietary trihexanoin supplementation could reduce diarrhea, regulate carbohydrate and fat metabolism, exert beneficial effects on the intestinal mucosal barrier, protect the intestinal mucosa from injuries, improve intestinal transport and absorption, and enhance antioxidant capacity. In conclusion, dietary supplementation with 0.5% trihexanoin improves the intestinal function and health of weaned piglets.


Asunto(s)
Triglicéridos/farmacología , Animales , Colesterol/sangre , Colesterol/metabolismo , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Suplementos Dietéticos , Glucógeno/sangre , Glucógeno/metabolismo , Íleon/efectos de los fármacos , Íleon/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas/sangre , Lipoproteínas/metabolismo , Porcinos , Destete
15.
Anim Sci J ; 89(11): 1581-1590, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30175428

RESUMEN

Oleum cinnamomi (OCM) is increasingly used as a feed additive in animal diets. The aim of this study was to investigate the effects of dietary supplementation with coated-OCM (cOCM) on the immunity and intestinal integrity of broiler chickens. A total of 396 one-day-old chicks were randomly assigned into six groups. The basal diets were supplemented with 50 mg/kg of flavomycin (positive control) as well as 0 (control), 50, 100, 200, and 300 mg/kg of cOCM. Compared with the control, both positive control and cOCM treatments did not improve the growth performance. Serum immunoglobulin (Ig) Y levels were decreased by flavomycin and 50 mg/kg of cOCM treatments (p < 0.05). Dietary cOCM decreased ileal secretory IgA contents at d 21 and commonly down-regulated duodenal and ileal mRNA expression of interleukin (IL)-1ß and IL-8 at d 42 (p < 0.05). The 300 mg/kg of cOCM increased jejunal ratio of villus height to crypt depth and upregulated intestinal claudin-1 expression (p < 0.05). Jejunal (at d 21) and duodenal (at d 42) mucin-2 expression was up and downregulated by both 50 and 300 mg/kg of cOCM, respectively (p < 0.05). In conclusion, dietary cOCM addition helped to maintain noninflammatory states of humoral and mucosal immunity, and improved the intestinal integrity of broiler chickens.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Pollos/inmunología , Pollos/fisiología , Cinnamomum zeylanicum , Dieta/veterinaria , Suplementos Dietéticos , Aditivos Alimentarios , Intestinos/inmunología , Intestinos/fisiología , Aceites de Plantas/administración & dosificación , Animales , Bambermicinas , Claudina-1/metabolismo , Femenino , Inmunoglobulina A Secretora/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Masculino , Mucina 2/metabolismo
16.
Amino Acids ; 50(8): 1089-1100, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29770867

RESUMEN

The traditionally classified nutritionally non-essential amino acids are now known to be insufficiently synthesized for maximal growth and optimal health in piglets. This study determined the effects of dietary supplementation with an amino acid blend (AAB; glutamate:glutamine:glycine:arginine:N-acetylcysteine = 5:2:2:1:0.5) on piglet growth performance and intestinal functions. Sixteen piglets (24-day-old) were randomly assigned to a corn and soybean meal-based diet supplemented with 0.99% alanine (isonitrogenous control) or 1% AAB. On day 20 of the trial, blood and intestinal tissue samples were obtained from piglets. Compared with the control, AAB supplementation reduced (P < 0.05) diarrhoea incidence; plasma alanine aminotransferase and diamine oxidase activities; intestinal concentrations of hydrogen peroxide, malondialdehyde, and heat shock protein-70, and intestinal mRNA levels for interleukin-1ß, interferon-γ, and chemokine (C-X-C motif) ligand-9; and the numbers of Enterobacterium family, Enterococcus genus and Clostridium coccoides in the colon digesta. Furthermore, AAB supplementation enhanced (P < 0.05): the plasma concentrations of serine, aspartate, glutamate, cysteine, tyrosine, phenylalanine, tryptophan, lysine, arginine, citrulline, ornithine, taurine, and γ-aminobutyric acid; intestinal villus height and surface area, villus height/crypt depth ratio, antioxidative enzyme activities, and mRNA levels for porcine ß-defensin-1, sodium-independent amino acid transporters (b0,+AT and y+LAT1), aquaporin (AQP) 3, AQP8, AQP10, nuclear factor erythroid 2-related factor 2 and glutathione S-transferase omega-2, and protein abundances of AQP3, AQP4, claudin-1, occludin and myxovirus resistance 1; and the numbers of Bifidobacterium genus and Lactobacillus genus in the colon digesta. Collectively, these comprehensive results indicate that dietary AAB supplementation plays an important role in improving piglet growth and intestinal function.


Asunto(s)
Aminoácidos/administración & dosificación , Alimentación Animal , Suplementos Dietéticos , Intestinos/fisiología , Porcinos/crecimiento & desarrollo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/sangre , Animales , Antioxidantes/análisis , Citocinas/metabolismo , Diarrea/prevención & control , Heces , Microbioma Gastrointestinal/fisiología , Expresión Génica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Intestinos/anatomía & histología , Ácidos Nucleicos/análisis , Ácidos Nucleicos/aislamiento & purificación , Proteínas/análisis , Proteínas/aislamiento & purificación , Distribución Aleatoria , Porcinos/sangre
17.
Front Biosci (Landmark Ed) ; 23(11): 2166-2176, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29772553

RESUMEN

A useful animal model of intestinal injury is pivotal for studying its pathogenesis and developing nutritional interventions (e.g., amino acid supplementation). Here, we propose the use of indomethacin (IDMT) to induce intestinal inflammation in neonatal pigs. Fourteen-day-old piglets fed a milk replacer diet receive intraperitoneal administration of IDMT (5 mg/kg body weight) for 3 consecutive days. On day 4, blood and intestinal samples are obtained for physiological and biochemical analyses. IDMT increases blood DAO activity, I-FABP concentration, neutrophil and eosinophil numbers; intestinal MMP3 mRNA levels, MPO activity, and MDA concentration; but reduces the plasma concentration of citrulline (synthesized exclusively by enterocytes of the small intestine), intestinal GSH-Px activity, and mRNA levels for villin, I-FABP, TRPV6, AQP10, and KCNJ13. Moreover, extensive hemorrhagic spots, thinned intestinal wall, and ulcers in the distal jejunum and ileum are observed in IDMT-challenged piglets. Furthermore, IDMT decreases intestinal villus height and villus surface area in the piglet jejunum. Collectively, this work establishes a porcine model of intestinal injury for designing novel nutritional means to improve gut function in pigs and humans.


Asunto(s)
Modelos Animales de Enfermedad , Enterocitos/metabolismo , Enfermedades Intestinales/metabolismo , Intestino Delgado/metabolismo , Animales , Animales Recién Nacidos , Enterocitos/efectos de los fármacos , Enterocitos/patología , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Indometacina , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/genética , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Malondialdehído/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Porcinos , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
18.
J Vet Med Sci ; 80(2): 205-212, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29187713

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is primary pathogenic bacteria of piglet diarrhea, over two thirds of piglets diarrhea caused by ETEC are resulted from STa-producing ETEC strains. This experiment was conducted to construct the recombinant E. coli expressing STa and study the injury and mechanism of recombinant E. coli expressing STa on 7 days old piglets colon. Twenty-four 7 days old piglets were allotted to four treatments: control group, STa group (2 × 109 CFU E. coli LMG194-STa), LMG194 group (2 × 109 CFU E. coli LMG194) and K88 group (2 × 109 CFU E. coli K88). The result showed that E. coli infection significantly increased diarrhea rates; changed DAO activity in plasma and colon; damaged colonic mucosal morphology including crypt depth, number of globet cells, density of lymphocytes and lamina propria cell density; substantially reduced antioxidant capacity by altering activities of GSH-Px, SOD, and TNOS and productions of MDA and H2O2; obviously decreased AQP3, AQP4 and KCNJ13 protein expression levels; substantially altered the gene expression levels of inflammatory cytokines. Conclusively, STa group had the biggest effect on these indices in four treatment groups. These results suggested that the recombinant strain expressed STa can induce piglets diarrhea and colonic morphological and funtional damage by altering expression of proteins connect to transportation function and genes associated with intestinal injury and inflammatory cytokines.


Asunto(s)
Toxinas Bacterianas/metabolismo , Colon/microbiología , Diarrea/veterinaria , Escherichia coli Enterotoxigénica/metabolismo , Enterotoxinas/metabolismo , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/metabolismo , Animales , Toxinas Bacterianas/genética , Colon/metabolismo , Colon/patología , Diarrea/microbiología , Diarrea/patología , Escherichia coli Enterotoxigénica/genética , Enterotoxinas/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Proteínas de Escherichia coli/genética , Expresión Génica , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Óxido Nítrico Sintasa/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Superóxido Dismutasa/metabolismo , Porcinos
19.
Front Microbiol ; 8: 2081, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29118744

RESUMEN

Clostridium perfringens is the causative pathogen of avian necrotic enteritis. Lactobacillus spp. are well-characterized probiotics with anti-microbial and immune-modulatory activities. In the present study, we investigated the effects of L. acidophilus and L. fermentum on the growth, α-toxin production and inflammatory responses of C. perfringens. In in vitro culture experiments, both lactobacilli inhibited the growth of C. perfringens (P < 0.01), accompanied with a decrease in pH (P < 0.01). Supernatants from lactobacilli cultures also suppressed the growth of C. perfringens during 24 h of incubation (P < 0.01), but this inhibitory effect disappeared after 48 h. Both lactobacilli decreased the α-toxin production of C. perfringens (P < 0.01) without influencing its biomass, and even degraded the established α-toxin (P < 0.01). Lower environmental pH reduced the α-toxin production as well (P < 0.01). Preincubation with L. acidophilus decreased the attachment of C. perfringens to cells (P < 0.01) with the cell cytotoxicity being unaffected. Both lactobacilli pretreatment reduced the up-regulation of proinflammatory factors, peptidoglycan (PGN) receptors and nuclear factor kappa B (NF-κB) p65 in C. perfringens-challenged chicken intestinal epithelial cells (P < 0.05). In conclusion, L. acidophilus and L. fermentum inhibited the pathological effects of C. perfringens in vitro conditions.

20.
Anim Sci J ; 88(11): 1753-1762, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28594103

RESUMEN

α-Ketoglutarate (AKG) is an extensively used dietary supplement in human and animal nutrition. The aim of the present study was to investigate effects of dietary AKG supplementation on the energy status and anti-oxidative capacity in liver and intestinal mucosa of Cherry Valley ducks. A total of 80 1-day-old ducks were randomly assigned into four groups, in which ducks were fed basal diets supplemented with 0% (control), 0.5%, 1.0% and 1.5% AKG, respectively. Graded doses of AKG supplementation linearly decreased the ratio of adenosine monophosphate (AMP) to adenosine triphosphate (ATP) in the liver, but increased ATP content and adenylate energy charge (AEC) in a quadratic and linear manner, respectively (P < 0.05). Increasing dietary AKG supplemental levels produced linear positive responses in ATP content and AEC, and negative responses in AMP concentration, the ratio of AMP to ATP and total adenine nucleotide in the ileal mucosa (P < 0.05). All levels of dietary AKG reduced the production of jejunal hydrogen peroxide and hepatic malondialdehyde (P < 0.05). Hepatic and ileal messenger RNA expression of AMP kinase α-1 and hypoxia-inducible factor-1α were linearly up-regulated as dietary AKG supplemental levels increased (P < 0.05). In conclusion, dietary AKG supplementation linearly or quadratically enhanced hepatic and intestinal energy storage and anti-oxidative capacity of Cherry Valley ducks.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Antioxidantes/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Patos/metabolismo , Metabolismo Energético/efectos de los fármacos , Mucosa Intestinal/metabolismo , Ácidos Cetoglutáricos , Hígado/metabolismo , Nucleótidos de Adenina/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Peróxido de Hidrógeno/metabolismo , Ácidos Cetoglutáricos/administración & dosificación , Ácidos Cetoglutáricos/farmacología , Malondialdehído/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...